INTRODUCTION TO THE NERVOUS SYSTEM

• STRUCTURE
 – BRAIN
 – SPINAL CORD
 – NERVES

Central Nervous System (CNS):

• Brain
• Spinal Cord
Peripheral Nervous System (PNS):

- Nerves
 - Cranial
 - Spinal

Cranial Nerves

Organization

Copyright © 2023, Medtronic, Inc. All Rights Reserved.
PRIME FUNCTIONS

• COMMUNICATION
 – Sending Messages, Cells in the NS Send Messages to Cells in Other Systems

• CONTROL
 – Regulation of Body Functions, The NS Regulates a # of Body Functions (Important in Maintaining Homeostasis)

• INTEGRATION
 – Unification of Body Functions, Allows the Body to Function as a Unit

Nervous & Endocrine Systems Share Functions:
Communication, Control, & Integration

Nervous & Endocrine Systems Share Functions

• NOTE: Both the Nervous and the Endocrine Systems Have Same Primary Functions, Communication, Control, and Integration

• The 2 Systems Differ in How They Communicate, Control, and Integrate
CELLS OF THE NERVOUS SYSTEM

• There Are 2 Major Types of Nervous System Cells
 – GLIA (NEUROGLIA)
 – NEURONS

Glia

– GLIA (NEUROGLIA)
 • DEFINITION/NUMBER
 – Supporting Cells in the Nervous System
 – 900 Billion
 • TYPES
 – Astrocytes
 – Microglia
 – Ependymal Cells
 – Oligodendrocytes
 – Schwann Cells

Types of Gli – Astrocytes

• ASTROCYTES
 – Found only in CNS
 – "Star Cells" (Star-Shaped)
 – Largest/Most Numerous Glia
 – Help Form the Blood-Brain Barrier
 • Protective Covering for Brain
 • Composed of Brain Capillaries And Astrocytes
Blood-Brain Barrier

- Protective Covering for Brain
- Composed of Brain Capillaries And Astrocytes

Types of Glia - Microglia

- MICROGLIA
 - “Small Glia” (Smallest)
 - Phagocytes in Brain Inflammation and other damaged CNS tissue

Types of Glia – Ependymal Cells

- EPENDYMAL CELLS
 - “Epithelial Cells” of the meninges/brain sinuses
 - Line Fluid Filled Spaces in the CNS
 - Help Produce/Keep Fluid Circulating (Cilia) Within the Spaces
Types of Glia - Oligodendrocytes

- OLIGODENDROCYTES
 - “Cells With Few Branches”
 - Functions:
 - Help Hold Together Nerve Fibers in the CNS (Nerve Fibers = Processes of Neurons)
 - Produce the Covering (Myelin) for Nerve Fibers (Axons) in the CNS (Many NF’s in the CNS Have 1 Covering:
 - Myelin Sheath, Formed by Oligodendrocytes)

Types of Glia – Schwann Cells

- SCHWANN CELLS
 - Located Only in the PNS
 - Functions
 - Hold Together Nerve Fibers in the PNS
 - Produces the Coverings for Many Nerve Fibers (Axons) in the PNS (Many NF’s in PNS Have 2 Coverings:
 - Myelin Sheath and Neurilemma, Formed by Schwann Cells;
 - The Myelin Sheath is the Schwann Cell’s Plasma Membrane and
 - The Neurilemma is the Schwann Cell’s Cytoplasm and Nucleus)
 - Cover and Support Neuron Cell Bodies in PNS

MS-Multiple Sclerosis

- Disease of the oligodendrocytes
- Affects CNS
- Results in demyelination of CNS white matter
- Nerve conduction is impaired
- Symptoms
 - Weakness
 - Loss of coordination
 - Visual impairment
 - Speech disturbances
- Most common in women between 20 and 40 years of age
- Normally a chronic disease characterized by relapses
- Some acute cases
- Cause unknown
 - Autoimmunity (lupus, arthritis)
 - Viral infections
 - Susceptibility is inherited in some cases
CELLS OF THE NERVOUS SYSTEM

- NEURONS
 - DEFINITION/NUMBER
 - Nerve Cells: Conduct NI
 - 100 Billion

Neuron Structure: Plasma Membrane & Cytoplasm

- PLASMA MEMBRANE
- CYTOPLASM

Neuron Structure: Cytoplasm

- CYTOSKELETON
 - Microtubules
 - Microfilaments
 - Neurofibrils:
 - Microscopic Threadlike Fibers that Extend Lengthwise Through the Neuron
 - Rapid Transport of Molecules From One End of the Neuron to the Other (i.e., Proteins)
Neuron Structure: Cell Body

- **CELL BODY**
 - Largest Part of Neuron
 - Contains Nucleus
 - Contains Typical Organelles
 - Contains Nissl Bodies
 - Rough ER of Neurons
 - Protein Synthesis

Neuron Structure: Processes

- **PROCESSES (NERVE FIBERS)**
 - Threadlike Extensions from Cell Body
 - 2 Types
 - DENDRITIC(S)
 - AXON

Neuron Structure: Processes

- DENDRITIC(S)
 - One or More/Neuron (Shorter)
 - Conduct NI Toward Cell Body
Neuron Structure: Processes

- AXON
 - One per Neuron (Longer)
 - Conduct Na Away from Cell Body

Neuron Structure: Axons

- AXON COLLATERAL(S)
 - Side Branches:
 - 1 or More
 - Divide into TELODENDRIA
 - TELODENDRIA (terminal branches) terminate into SYNAPTIC KNOBS (terminal ends-bulges)

Neuron Structure: Coverings

- COVERINGS
 - ONE COVERING: MYELIN SHEATH
 - (MYELINATED NERVE FIBERS)
 - TWO COVERINGS: MYELIN SHEATH & NEURILEMMA
 - NO COVERINGS
 - (UNMYELINATED NERVE FIBERS)
ONE COVERING: MYELIN SHEATH (MYELINATED NERVE FIBERS)

- Axons of Neurons in CNS Have 1 Covering, the Myelin Sheath
 - Formed by Oligodendrocytes
 - Known as Myelinated Nerve Fibers (White)

TWO COVERINGS: MYELIN SHEATH & NEURILEMMA (MYELINATED NERVE FIBERS)

- Many Axons of Neurons in PNS Have 2 Coverings, Myelin Sheath and Neurilemma, Formed by Schwann Cells
- Also Known as Myelinated Nerve Fibers (White)

NO COVERINGS (UNMYELINATED NERVE FIBERS)

- Some Axons of Neurons in PNS Have No Coverings
- Axons are Embedded in Schwann Cells, Rather than Schwann Cells Wrapping Around Axons
- Known as Unmyelinated Nerve Fibers (Gray)
Unmyelinated vs Myelinated Neuron Structure:

Axon Coverings: NOTES

- Neurilemma Functions in Repair of Neurons
 - Mature Neurons Are Not Capable of Mitosis
 - Repair of Neurons Requires Intact Cell Body and the Presence of a Neurilemma
 - Neurilemma Serves as the Guiding Tunnel
Neuron Structure:
Axon Coverings: NOTES

- Damage to Neurons in the CNS is Permanent*
 - Fetal tissue transplants
 - Presence of coverings
 - "Club Drugs" – see next slide

"Club Drugs"

Chronic abuse of MDMA (Ecstasy) appears to produce long-term damage to serotonin-containing neurons in the brain. The neurotransmitter serotonin plays in regulating emotion, memory, sleep, pain, and higher order cognitive processes. It is likely that MDMA use can cause a variety of behavioral and cognitive changes as well as impaired memory.

http://www.drugabuse.gov/Published_Articles/fundrugs.html

CLASSIFICATION OF NEURONS

STRUCTURAL CLASSIFICATION

- Neuron Classified According to Number of Processes that Extend Off the Cell Body
 - MULTIPOLAR NEURONS
 - Several Dendrites, 1 Axon
 - BIPOLAR NEURONS
 - 1 Dendrite (Branched), 1 Axon
 - UNIPOLAR NEURONS
 - Several Dendrites, 1 Axon (Peripheral and Central Portions)
MULTIPOLAR NEURONS
Several Dendrites, 1 Axon

BIPOLAR NEURONS
1 Dendrite (Branched), 1 Axon

UNIPOLAR NEURONS
Several Dendrites, 1 Axon (Peripheral and Central Portions)
FUNCTIONAL CLASSIFICATION

- Neuron Classified According to Direction It Conducts Nerve Impulses

AFFERENT (SENSORY) NEURONS

- Conduct Nerve Impulses Toward CNS, Specifically From Receptors To CNS
- Receptors:
 - Distal Ends of Dendrites of Afferent (Sensory) Neurons
 - Receives a Stimulus
 - Converts Stimulus into a Nerve Impulse
 - Located in Sense Organs

AFFERENT (SENSORY) NEURONS

- Receptors:
 - Distal Ends of Dendrites of Afferent (Sensory) Neurons
 - Receives a Stimulus
 - Converts Stimulus into a Nerve Impulse
 - Located in Sense Organs
FUNCTIONAL CLASSIFICATION

- EFFERENT (MOTOR) NEURONS
 - Conduct Nerve Impulses Away From CNS, Specifically from CNS to Effectors
 - Effector:
 • Structure that Shows Action
 • Muscle or Gland

EFFERENT (MOTOR) NEURONS

- Conduct Nerve Impulses Away From CNS, Specifically from CNS to Effectors
- Effector:
 • Structure that Shows Action
 • Muscle or Gland

EFFERENT (MOTOR) NEURONS

- Conduct Nerve Impulses Away From CNS, Specifically from CNS to Effectors
- Effector:
 • Structure that Shows Action
 • Muscle or Gland
FUNCTIONAL CLASSIFICATION

- INTERNEURONS
 - "Between Neurons", Conduct Nerve Impulses From Afferent Neurons to Efferent Neurons
 - Located Entirely in CNS

Interneurons

Fast spiking cell (PV-positive interneuron)

FUNCTIONAL CLASSIFICATION

- MOST Afferent Neurons are Unipolar (A Few are Bipolar)
- Efferent Neurons are Multipolar
- Interneurons are Multipolar

- MULTIPOLAR NEURONS
 - Several Dendrites, 1 Axon

- BIPOLAR NEURONS
 - 1 Dendrite (Branched), 1 Axon

- UNIPOLAR NEURONS
 - Several Dendrites, 1 Axon (Peripheral and Central Portions)
GRAY MATTER

- **DEFINITION**
 - Gray
 - Neuron Cell Bodies (CNS, PNS) and/or Unmyelinated Nerve Fibers (PNS)
- **NUCLEI (us)**
 - Gray Matter in the CNS
- **GANGLIA (ion)**
 - Gray Matter in the PNS

WHITE MATTER

- **DEFINITION**
 - White
 - Myelinated Nerve Fibers
- **TRACTS (bundles of axons)**
 - White Matter in the CNS
- **NERVES (bundles of axons)**
 - White Matter in the PNS

WHITE MATTER

- **NERVES**
 - White Matter in the PNS
 - CONNECTIVE TISSUE COMPONENTS
 - **ENDONEURUM**
 - Connective Tissue that Wraps Around Each Individual Myelinated Nerve Fiber
 - **PERINEURUM**
 - Connective Tissue that Wraps Around Each Group of Myelinated Nerve Fibers (Fascicle)
 - **EPINEURUM**
 - Connective Tissue that Wraps Around the Entire Nerve
WHITE MATTER

- **TYPES**
 - MIXED NERVES
 - Contain Both Afferent and Efferent Nerve Fibers
 - Most Common
 - SENSORY NERVES
 - Contain Mainly Afferent Nerve Fibers
 - MOTOR NERVES
 - Contain Mainly Efferent Nerve Fibers

Nerve Types: Sensory & Motor
NEURON PATHWAYS

• REFLEX ARC PATHWAYS (REFLEX ARCS)
 – DEFINITION
 • Neuron Pathway To/Away From the CNS
 • Nerve Impulse Always Begins in Receptors, Ends in Effector

NEURON PATHWAYS

• TYPES
 – THREE NEURON ARC
 • Involves 3 Neurons: Afferent Neuron, Interneuron, and Efferent Neuron
 • Most Common Type of Reflex Arc Pathway
 – TWO NEURON ARC
 • Involves 2 Neurons: Afferent Neuron and Efferent Neuron (No Interneurons)
 • Simplest Type of Reflex Arc Pathway

NEURON PATHWAYS

• REFLEX
 – Response Produced When a Nerve Impulse Travels Over a Reflex Arc Pathway
 – Involuntary (A Response to a Stimulus)
 – Types (Based on Effector)
 • Muscle Contraction
 • Gland Secretion
 • *Reflex: Mechanism of Communication, Control in Nervous System

*Reflex: Mechanism of Communication, Control in Nervous System
NEURON PATHWAYS

- OTHER PATHWAYS
 - Many Other Neuron Pathways Exist in the Nervous System
 - Examples:
 - Receptors → Brain
 - Brain → Skeletal Muscles
 - Within the Brain

Links

- Nerve healing
 - http://www.hucmlrc.howard.edu/neuroanat/Lectures/axoplasmtrans.htm
- Pictures and Animations